3.390 \(\int \frac{1}{(a+a \cos (c+d x))^{7/2} \sec ^{\frac{3}{2}}(c+d x)} \, dx\)

Optimal. Leaf size=197 \[ \frac{17 \sin (c+d x)}{192 a^2 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}}+\frac{7 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{64 \sqrt{2} a^{7/2} d}+\frac{3 \sin (c+d x)}{16 a d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{5/2}}-\frac{\sin (c+d x)}{6 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{7/2}} \]

[Out]

(7*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sqr
t[Sec[c + d*x]])/(64*Sqrt[2]*a^(7/2)*d) - Sin[c + d*x]/(6*d*(a + a*Cos[c + d*x])^(7/2)*Sqrt[Sec[c + d*x]]) + (
3*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(5/2)*Sqrt[Sec[c + d*x]]) + (17*Sin[c + d*x])/(192*a^2*d*(a + a*C
os[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.496976, antiderivative size = 197, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {4222, 2765, 2978, 12, 2782, 205} \[ \frac{17 \sin (c+d x)}{192 a^2 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{3/2}}+\frac{7 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)} \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a \cos (c+d x)+a}}\right )}{64 \sqrt{2} a^{7/2} d}+\frac{3 \sin (c+d x)}{16 a d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{5/2}}-\frac{\sin (c+d x)}{6 d \sqrt{\sec (c+d x)} (a \cos (c+d x)+a)^{7/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + a*Cos[c + d*x])^(7/2)*Sec[c + d*x]^(3/2)),x]

[Out]

(7*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*Sqr
t[Sec[c + d*x]])/(64*Sqrt[2]*a^(7/2)*d) - Sin[c + d*x]/(6*d*(a + a*Cos[c + d*x])^(7/2)*Sqrt[Sec[c + d*x]]) + (
3*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(5/2)*Sqrt[Sec[c + d*x]]) + (17*Sin[c + d*x])/(192*a^2*d*(a + a*C
os[c + d*x])^(3/2)*Sqrt[Sec[c + d*x]])

Rule 4222

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rule 2765

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[((b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(2*m + 1)), x] + Dist[1/
(a*b*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ
[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))

Rule 2978

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*
x])^(n + 1))/(a*f*(2*m + 1)*(b*c - a*d)), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2782

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[(-2*a)/f, Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, (b*Cos[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{(a+a \cos (c+d x))^{7/2} \sec ^{\frac{3}{2}}(c+d x)} \, dx &=\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\cos ^{\frac{3}{2}}(c+d x)}{(a+a \cos (c+d x))^{7/2}} \, dx\\ &=-\frac{\sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2} \sqrt{\sec (c+d x)}}-\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{\frac{a}{2}-4 a \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{5/2}} \, dx}{6 a^2}\\ &=-\frac{\sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2} \sqrt{\sec (c+d x)}}+\frac{3 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}-\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{-\frac{a^2}{4}-\frac{9}{2} a^2 \cos (c+d x)}{\sqrt{\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx}{24 a^4}\\ &=-\frac{\sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2} \sqrt{\sec (c+d x)}}+\frac{3 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}+\frac{17 \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{\left (\sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int -\frac{21 a^3}{8 \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{48 a^6}\\ &=-\frac{\sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2} \sqrt{\sec (c+d x)}}+\frac{3 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}+\frac{17 \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}+\frac{\left (7 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}} \, dx}{128 a^3}\\ &=-\frac{\sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2} \sqrt{\sec (c+d x)}}+\frac{3 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}+\frac{17 \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}-\frac{\left (7 \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}\right ) \operatorname{Subst}\left (\int \frac{1}{2 a^2+a x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right )}{64 a^2 d}\\ &=\frac{7 \tan ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{\cos (c+d x)} \sqrt{a+a \cos (c+d x)}}\right ) \sqrt{\cos (c+d x)} \sqrt{\sec (c+d x)}}{64 \sqrt{2} a^{7/2} d}-\frac{\sin (c+d x)}{6 d (a+a \cos (c+d x))^{7/2} \sqrt{\sec (c+d x)}}+\frac{3 \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{5/2} \sqrt{\sec (c+d x)}}+\frac{17 \sin (c+d x)}{192 a^2 d (a+a \cos (c+d x))^{3/2} \sqrt{\sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 3.64394, size = 153, normalized size = 0.78 \[ \frac{\tan \left (\frac{1}{2} (c+d x)\right ) \sec ^4\left (\frac{1}{2} (c+d x)\right ) \left (2 (140 \cos (c+d x)+17 \cos (2 (c+d x))+59) \sqrt{2-2 \sec (c+d x)}+672 \cos ^6\left (\frac{1}{2} (c+d x)\right ) \sec (c+d x) \tanh ^{-1}\left (\sqrt{\sin ^2\left (\frac{1}{2} (c+d x)\right ) (-\sec (c+d x))}\right )\right )}{3072 \sqrt{2} a^3 d \sqrt{-(\sec (c+d x)-1) \sec (c+d x)} \sqrt{a (\cos (c+d x)+1)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[1/((a + a*Cos[c + d*x])^(7/2)*Sec[c + d*x]^(3/2)),x]

[Out]

(Sec[(c + d*x)/2]^4*(2*(59 + 140*Cos[c + d*x] + 17*Cos[2*(c + d*x)])*Sqrt[2 - 2*Sec[c + d*x]] + 672*ArcTanh[Sq
rt[-(Sec[c + d*x]*Sin[(c + d*x)/2]^2)]]*Cos[(c + d*x)/2]^6*Sec[c + d*x])*Tan[(c + d*x)/2])/(3072*Sqrt[2]*a^3*d
*Sqrt[a*(1 + Cos[c + d*x])]*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])])

________________________________________________________________________________________

Maple [A]  time = 0.424, size = 288, normalized size = 1.5 \begin{align*}{\frac{\sqrt{2} \left ( -1+\cos \left ( dx+c \right ) \right ) ^{5}\cos \left ( dx+c \right ) }{384\,d{a}^{4} \left ( \sin \left ( dx+c \right ) \right ) ^{11}}\sqrt{a \left ( 1+\cos \left ( dx+c \right ) \right ) } \left ( 17\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+53\,\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}+21\,\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \left ( \cos \left ( dx+c \right ) \right ) ^{2}\sin \left ( dx+c \right ) -49\,\sqrt{2}\cos \left ( dx+c \right ) \sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+42\,\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \cos \left ( dx+c \right ) \sin \left ( dx+c \right ) -21\,\sqrt{2}\sqrt{{\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }}}+21\,\arcsin \left ({\frac{-1+\cos \left ( dx+c \right ) }{\sin \left ( dx+c \right ) }} \right ) \sin \left ( dx+c \right ) \right ) \left ( \left ( \cos \left ( dx+c \right ) \right ) ^{-1} \right ) ^{-{\frac{3}{2}}} \left ({\frac{\cos \left ( dx+c \right ) }{1+\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+cos(d*x+c)*a)^(7/2)/sec(d*x+c)^(3/2),x)

[Out]

1/384/d*2^(1/2)/a^4*(a*(1+cos(d*x+c)))^(1/2)*(-1+cos(d*x+c))^5*cos(d*x+c)*(17*cos(d*x+c)^3*2^(1/2)*(cos(d*x+c)
/(1+cos(d*x+c)))^(1/2)+53*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2+21*arcsin((-1+cos(d*x+c))/sin
(d*x+c))*cos(d*x+c)^2*sin(d*x+c)-49*2^(1/2)*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+42*arcsin((-1+cos(d*x
+c))/sin(d*x+c))*cos(d*x+c)*sin(d*x+c)-21*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+21*arcsin((-1+cos(d*x+c))/
sin(d*x+c))*sin(d*x+c))/(1/cos(d*x+c))^(3/2)/(cos(d*x+c)/(1+cos(d*x+c)))^(5/2)/sin(d*x+c)^11

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{7}{2}} \sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(7/2)/sec(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(7/2)*sec(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [A]  time = 2.16779, size = 555, normalized size = 2.82 \begin{align*} -\frac{21 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{4} + 4 \, \cos \left (d x + c\right )^{3} + 6 \, \cos \left (d x + c\right )^{2} + 4 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{\cos \left (d x + c\right )}}{\sqrt{a} \sin \left (d x + c\right )}\right ) - \frac{2 \,{\left (17 \, \cos \left (d x + c\right )^{3} + 70 \, \cos \left (d x + c\right )^{2} + 21 \, \cos \left (d x + c\right )\right )} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{\cos \left (d x + c\right )}}}{384 \,{\left (a^{4} d \cos \left (d x + c\right )^{4} + 4 \, a^{4} d \cos \left (d x + c\right )^{3} + 6 \, a^{4} d \cos \left (d x + c\right )^{2} + 4 \, a^{4} d \cos \left (d x + c\right ) + a^{4} d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(7/2)/sec(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

-1/384*(21*sqrt(2)*(cos(d*x + c)^4 + 4*cos(d*x + c)^3 + 6*cos(d*x + c)^2 + 4*cos(d*x + c) + 1)*sqrt(a)*arctan(
sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) - 2*(17*cos(d*x + c)^3 + 70*cos(d*
x + c)^2 + 21*cos(d*x + c))*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^4*d*cos(d*x + c)^4 +
4*a^4*d*cos(d*x + c)^3 + 6*a^4*d*cos(d*x + c)^2 + 4*a^4*d*cos(d*x + c) + a^4*d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**(7/2)/sec(d*x+c)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac{7}{2}} \sec \left (d x + c\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(7/2)/sec(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate(1/((a*cos(d*x + c) + a)^(7/2)*sec(d*x + c)^(3/2)), x)